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Why is this interesting? 

“The first principle is that you must not fool yourself 
- and you are the easiest person to fool” 
 Feynman, 1974 
 
Increased attention for these topics across science. 
Better knowledge of inferences and evidence will: 
•  improve your own inferences 
•  increase your contributions to cumulative science 
•  make your research lines more efficient.  
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Why is this uninteresting? 

Meehl, 1990 
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What are we doing? 

 
 

What is the goal of collecting data, and 
reporting statistics? 

 
(“I don’t know, but reviewers seem to like it!”) 
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Three Paths to Salvation 

“Truth is One, The Paths are Many” 
[Bhagavad Gita] 

 
• The Karma yoga: The path of Action  
• The Jnana yoga: The path of Devotion 
• The Bhakti yoga: The path of Knowledge 
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Three Paths to Salvation 

“Three Questions One Might Ask” 
[Royall, 1997] 

 
• What should I DO? (The path of Action)  
• What should I BELIEVE? (The path of Devotion) 
• How should I treat data as RELATIVE 

EVIDENCE? (The path of Knowledge) 
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The Path of Action 

[Neyman & Pearson, 1933] 
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The Path of Action 

• Reject the null hypothesis (H0) whenever p < α 
• p = 0.048? p = 0.00001? Potayto, potahto 

 
• This is a rule to govern our behavior. 
• It tells us nothing about the current test, we 

can only say ‘in the long run, we won’t be 
wrong very often’ 
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Error Control 
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The history of NHST 

• The history of NHST starts with a fierce debate 
between Fisher’s significance test (e.g., Fisher, 
1925) and Neyman and Pearson’s hypothesis 
test (e.g., Neyman and Pearson, 1928). 
 

• NHST is often practiced as a hybrid procedure 
that combines these two different 
viewpoints. 
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Neyman-Pearson 

• The Neyman-Pearson approach is the standard 
logic underlying almost all statistics you will 
see in journals, though few of its users would 
recognize the name.  
 

• Though researcher often don’t understand the 
logic, and many people misuse p-values. 
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Neyman vs. Fisher 

 Haha, I’ve won, my 
approach to statistics is the 
underlying logic of almost 
all statistical tests you see 

in journals! 
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Neyman vs. Fisher 

 
Oh shut up! No one knows 
your name, and everyone 

uses p-values in the 
incorrect way I proposed!  
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Neyman vs. Fisher 

 
And, in case you didn’t 

know, people love me so 
much, they named the F-
distribution in my honor! 
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Neyman vs. Fisher 

 

……… 
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Neyman vs. Fisher 

 

Like, whatever, Mr 
Eugenicist 
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Neyman vs. Fisher vs. Bayes 
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Neyman vs. Fisher vs. Bayes 

 Gentleman! Calm down! In 
the future, everyone will use 
Bayesian statistics anyway! 

One journal has already 
banned your silly p-value 
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Neyman vs. Fisher vs. Bayes 

 
Yeah, right. My prior on that 

happening isn’t very high, 
Reverend Bayes. 
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Neyman vs. Fisher vs. Bayes 

 
Haha, good one Jerzy, my 
Frequentist friend. Come, 

let’s go for a long run. 
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Neyman vs. Fisher vs. Bayes 
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Bayes vs. Royall 
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Bayes vs. Royall 

 
No one cares about your 

subjective opinion, 
Reverend Bayes. Let’s use 
likelihoods without priors!  
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Bayes vs. Royall 

 
Who are you? I mean, I 

can’t even find your 
picture on the internet, 

dude!  



/ Human-Technology Interaction PAGE 25 1-2-2016 

Three Paths to Salvation 

“Truth is One, The Paths are Many” 
[Bhagavad Gita] 

 
• The Karma yoga: The path of Action  
• The Jnana yoga: The path of Devotion 
• The Bhakti yoga: The path of Knowledge 
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Three Paths to Salvation 

“Truth is One, The Paths are Many” 
[Bhagavad Gita] 

 
• The path of Action (Neyman-Pearson)  
• The path of Devotion (Bayes) 
• The path of Knowledge (Royall) 
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What is a p-value? 

This should be easy, right? Right. 
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What is a p-value? 

• P-values are what you use if you don’t know 
Bayesian statistics.  
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What is a p-value? 

• Does the use of a cell-phone increase the 
likelihood of getting into a car accident 
compared to not using a cell phone? 
 

• This difference is either larger than 0, is not.  
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What is a p-value? 

• Name: Null-Hypothesis Significance Testing. 
• But you can call me NHST 

 

• However, effects are not always ‘significant’ (in 
the common meaning of ‘important’). 

• We’ll say: null-hypothesis testing 
• Observed effects are statistically different 

from zero (even though the ‘null’ does not 
need to be ‘nil’, or 0, it often is). 
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What is a p-value? 

• If you compare 2 groups on some dependent 
variable, the difference will not be exactly 0. 
What if you find people who call while driving 
get into 0.58 accidents more, on average? 

• A) That means they get into accidents more 
• B) That could just be random variation around 0 
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What is a p-value? 

• We need a test statistic to tell us whether this 
value of 0.58 is surprising or not.  
 

• We compare this test statistic to a distribution 
(normal distribution, t distribution, chi-square) 
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What is a p-value? 

• We need a test statistic to tell us whether this 
value of 0.58 is surprising or not.  
 

• We compare this test statistic to a distribution 
(normal distribution, t distribution, chi-square) 

Or why not the F-
distribution? 
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P-value 
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P-value 

• Now that we have a p-value, what does it 
mean? 
 

• A p-value is the probability of getting the 
observed or more extreme data, assuming 
the null hypothesis is true. 
 

• (see how it’s a statement about your data?) 
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P-value 

 

We found a p-value < 0.05, so our theory 
 
 

  We found a p-value <0.05, so our data 

 

 
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What does a p<.05 mean?  

• From http://www.popsci.com/race-prove-
spooky-quantum-connection-may-have-
winner  

 

http://www.popsci.com/race-prove-spooky-quantum-connection-may-have-winner
http://www.popsci.com/race-prove-spooky-quantum-connection-may-have-winner
http://www.popsci.com/race-prove-spooky-quantum-connection-may-have-winner


/ Human-Technology Interaction PAGE 38 1-2-2016 

What does a p<.05 mean?  

• The data we have observed should therefore 
be considered surprising if H0 would be true. 
 

• A p-values does not give the probability that 
the null-hypothesis is true, given the data (we 
need Bayesian statistics for this). 

Indeed, you need 
me! 
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What does a p<.05 mean?  

• We have rejected (‘falsified’) the null (with a 
certain error percentage).  

• The Higgs boson used 5 sigma, or p < 0.0000003. 
• (Because if you are going to spend $13.25 billion 

on a scientific finding, you’d better be pretty sure.) 

 
• But Popper is only impressed if you made a 

bold hypothesis. The null is not bold. 
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What does a p<.05 mean?  

• You cannot ‘prove’ the alternative hypothesis 
is true (ever!). You can only ‘corroborate’ it.  
 

• ‘Mere supporting instances are as a rule too 
cheap to be worth having’ [Popper, 1983] 
 

• One of the ways to introduce Popper’s notion 
of corroboration is by means of the notion of a 
severe test. 
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What does a p>.05 mean?  

• If a p-value is larger than 0.05, the data we 
have observed is not surprising. This doesn’t 
imply that the null-hypothesis is true.  
 

• The p-value can only be used as a test to 
reject the null-hypothesis. It can never be 
used to accept the null-hypothesis as true. 
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What does a p>.05 mean?  

• I try to think of it as MU (無) 
 

• A monk asked Joshu, a Chinese Zen master: 
`Has a dog Buddha-nature or not?'Joshu 
answered: `Mu.' [Mu is the negative symbol in 
Chinese, meaning `No-thing' or `Nay'.] 
 

• “Un-asking” the question 
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What does a p>.05 mean?  
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answered: `Mu.' [Mu is the negative symbol in 
Chinese, meaning `No-thing' or `Nay'.] 
 

• “Un-asking” the question 
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What does a p>.05 mean?  

But you can ACT as if the 
null-hypothesis is true! 

 
“Every test of a statistical  

hypothesis consists in a rule 
of rejecting the hypothesis 

when a specified character, x, 
of the sample lies within 
certain critical limits, and 

accepting it or remaining in 
doubt in all other cases.  
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What does a p>.05 mean?  

• Lakatos: 
• Research programmes based on a ‘hard core’ of theoretical 

assumptions that cannot be abandoned or altered without 
changing the programme. 

• A ‘protective belt’ around the hard core consists of 
auxiliary hypotheses.  

• Popper had a very negative attitude to such ‘ad-hoc’ 
theoretical amendments. But Lakatos differentiates 
between progressive and degenerative research lines.  
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What does a p>.05 mean?  

• Progressive research lines: 
•  The changes to the theory have increased it’s predictive power. It can 

now explain more than before 

• Degenerative research lines: 
• Offering some explanation for troublesome evidence.  

• So p > 0.05 takes you further into a degenerative 
research line.  

• But before a degenerative research line can be 
abandoned, we need a viable alternative. 

• Sometimes, this alternative is simply: It was a fluke. 
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What does a p>.05 mean?  

 

[Stevens, 1957] 
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Interpreting p-values 

• P-values are correlated with evidential value, 
but far from perfectly correlated with 
evidential value (as shown by Bayes Statistics). 
 

• In general, a low p-values warrants further 
research, but is not in itself support for a 
theory. 
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Misinterpreting p-values 

P-values are not: 
• The probability a theory is true (you need 

Bayesian statistics for this) 
• The probability a finding will replicate (this 

depends on the power of a study) 
• The probability you have made a type 1 error (this 

depends on probability H0 is true, only 5% if 
p(H0)=1) 
 

(see Nickerson, 2000 – really, it’s very good) 
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Problems with a focus on p <0.05 

• One of the biggest problems with the 
widespread focus on p-values is their use as a 
selection criterion of which findings provide 
‘support’ for a hypothesis and which don’t. 
 

• Due to publication bias, tests with p-values 
below 0.05 are much more likely to be 
published than those above 0.05. 



/ Human-Technology Interaction PAGE 51 1-2-2016 

Problems with a focus on p <0.05 
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The history of NHST 

• when a small p-value is observed: …  [e]ither 
an exceptionally rare chance has occurred, or 
[H0] is not true [i.e., strong evidence against 
H0]” (Fisher  1956, p. 39) 
 

• a significant p-value allows us to reject H0, 
but a non-significant p-value does not allow 
us to accept H0 
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The history of NHST 

• Something both Fisher and Neyman agreed 
upon, but which is now often lost in statistical 
inferences, is that statistical inferences should 
be used with “discretion  and understanding, 
and not as instruments which themselves give 
the final verdict”  
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Neyman-Pearson 
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4 possible outcomes of a study 

H0 True H1 True 
Significant Finding False Positive (α) True Positive (1-β) 
Non-Significant 
Finding True Negative (1- α) False Negative (β) 
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• The percentage of false positives equals the 
Type 1 error rate (or α, the significance level).  

• This means that if you would perform 1,000 
studies, and set the α level to 5% (or 0.05) as is 
normally done, then you can expect to observe 50 
studies that show an effect that is statistically 
different from zero in the sample you collected, 
even though there is no real difference in the 
population. 
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Power 

• The probability of correctly rejecting the null 
hypothesis is known as the power of a 
statistical test (Cohen, 1988) 
 

• The statistical power of a study is determined 
by the size of the effect, the sample size of the 
study (and the reliability of the sample result), 
and the significance criterion (typically α = 
.05).  
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• The percentage of false negatives (or Type 2 
errors, β) equals 1 minus the power of the 
study.  

• This means that if your study has 90% power (so a 
probability of 90% to find an effect that is 
statistically different from zero, if there really is an 
effect) then there obviously is a 10% probability of 
not finding it when it is there, or a 10% Type 2 
error rate. 
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Which p-values can you expect? 
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Which p-values can you expect? 

• Assuming the null hypothesis is true (in other 
words: having 0 power), p-values are 
uniformly distributed. Every p-value is equally 
likely to be observed. 
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Which p-values can you expect? 
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Which p-values can you expect? 
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Which p-values can you expect? 

Hey, that’s a likelihood! 
Useful, aren’t they? 
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Which p-values can you expect? 

From: http://rpsychologist.com/d3/NHST/ 
Be sure to visit Kristoffer Magnusson’s site! 

 

http://rpsychologist.com/d3/NHST/
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Which p-values can you expect? 

From: http://rpsychologist.com/d3/NHST/ 
Be sure to visit Kristoffer Magnusson’s site! 

Distribution if H0 is true 
Centered on 0 

Distribution if H1 is true 
Centered on d = 0.35 

http://rpsychologist.com/d3/NHST/
http://rpsychologist.com/d3/NHST/
http://rpsychologist.com/d3/NHST/
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Which p-values can you expect? 

True Positive 

False Negative 

True Negative 
False Negative 
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Which p-values can you expect? 

From: http://rpsychologist.com/d3/NHST/ 
Be sure to visit Kristoffer Magnusson’s site! 

Likelihood of observing a p 
= 0.05 when H0 is true  

Likelihood of observing a 
p = 0.05 when H1 is true  

http://rpsychologist.com/d3/NHST/
http://rpsychologist.com/d3/NHST/
http://rpsychologist.com/d3/NHST/
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Which p-values can you expect? 
Here, we have 80% power 
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Which p-values can you expect? 

• So, with 80% power, finding a p = 0.05 when 
H1 true is more likely than finding a p = 0.05 
when H0 is true. The p-value is evidence for H1 
relative to H0. 

• This is a likelihood, or the path of knowledge. 
Likelihoods tell us the relative likelyhood of the 
data under a specific hypothesis.  
 

I coined the term 
likelihood in 1921! 
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Which p-values can you expect? 
Here, we have 96% power 

Likelihood of observing a p 
= 0.05 when H0 is true  

Likelihood of observing a 
p = 0.05 when H1 is true  
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Which p-values can you expect? 
Here, we have 96% power 
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Which p-values can you expect? 

• So, with 96% power, finding a (one-sided) p = 
0.05 when H0 true is more likely than finding a 
p = 0.05 when H1 is true. The p-value is 
evidence for H0 relative to H1. 

• But which H1?  
• That’s up to you. But you can only have relative 

evidence, so you always need to compare 2 
hypotheses when you want to provide evidence. 
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Interpreting p-values 
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Interpreting p-values 

“The data reported herein provide compelling 
evidence of gender bias in personal grant 
applications” 
 
• If you have a sample of 2823 individuals, a p = 

0.045 is not ‘compelling evidence’ for your 
hypothesis. 
 

 (see also http://blog.casperalbers.nl/science/nwo-gender-bias-and-simpsons-paradox/)  

http://blog.casperalbers.nl/science/nwo-gender-bias-and-simpsons-paradox/
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Bayesian Statistics 

• But given the evidence, how much should you 
believe the result is true? 
 

• For this, you need to weigh your prior belief. 
Did you get a p = 0.045 on a Stroop effect, or in 
an experiment examining pre-cognition? 
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Bayesian Statistics 

• Major difference is Bayesian statistics 
expresses the probability a hypothesis is true, 
based on the data, and a prior. 

Posterior probability =       Likelihood     x   prior probability 
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Bayesian Statistics 

• The difference between Pr(D|H0) and Pr(H0|D) might 
not be immediately clear, but the two probabilities 
can be completely different.  
 

Probability of being Dead, given that your Head is bitten of by a shark: 
P(D|H) = 0.9999999 

 
Probability of your Head being bitten off by a shark, given that you are Dead: 

P(H|D) = 0.0000002 
 

(It also works is D means Data, and H means Hypothesis) 
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Bayes Factors vs. p-values 
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Bayes Factors vs. p-values 

Prior Probability 
H0 is true Minimal Posterior 

Probability H0 is true 

E.g., 5%: After 
collecting data, the 
probability H0 is true 
is only 5% 

E.g., 50%: Before 
collecting data, you 
believe there is 50% 
probability H0 is true 
(it’s like flipping a coin) 
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Bayes Factors vs. p-values 
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Bayes Factors vs. p-values 
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Bayes Factors vs. p-values 
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Interpreting p-values 

• What to do if you have observed a p = 0.045? 
• If possible, replicate the study (typically with a 

larger sample). 
• If not possible, acknowledge the relatively low 

evidential value of the data. 
• Is the effect surprising? Then it might not be real. 

Is it predicted a-priori based on solid theory and 
earlier results? Then it might be real. 
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Bayesian Statistics 

• It’s important to understand Bayesian statistics. 
Subjective beliefs should be important to you, and 
quantifying it (instead of ‘feeling’ it) is useful. 

• I’m not the person to teach you Bayesian stats, but I 
can recommend these books: 
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Bayesian Statistics 

• Remember: It’s not either-or.  
• You can use both Bayesian stats and 

Frequentist stats – they will lead to similar 
inferences, most of the time, especially with 
sufficient data. 
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