Introduction to Augmented Reality and its Future in Education and Learning

Stephan Lukosch Faculty of Technology, Policy and Management

VIRTUAL AND AUGMENTED REALITY

Virtual Reality

- Head mounted display, gloves
- Separation from the real world

https://www.youtube.com/watch?v=Ykf4gDEzIC8

Augmented Reality

- Combines Real and Virtual Images
- Interactive in real-time
- Registered in 3D

https://www.youtube.com/watch?v=Qm2gnnyyvEg

Strong vs. weak AR

Weak AR

- Imprecise tracking
- No knowledge of environment
- Limited interactivity
- Handheld AR
- Strong AR
 - Very accurate tracking
 - Seamless integration into real world
 - Natural interaction
 - Head mounted AR

Augmented vs. virtual reality

	Virtual Reality Replaces Reality	Augmented Reality Enhances Reality
Scene Generation	Requires realistic images	Minimal rendering okay
Display Device	Fully immersive, wide field of view	Non-immersive, small field of view
Tracking	Low to medium accuracy is okay	The highest accuracy possible

HISTORY OF AR

Early head-mounted display (HMD) patents

McCollum's Stereo TV HMD (1943)

Heilig's Multisensory HMD (1960)

Sutherland's first see-through HMD system (1968)

TUDelft

https://www.youtube.com/watch?v=NtwZXGprxag

US Air Force SuperCockpit Program (1970-80's)

First industrial use – Boeing wire harness assembly (early 1990's)

Further development of the field

- 1990's: Collaboration, outdoor, interaction
- 1990's: Augmented sports broadcasts
- 1995 ... : Tools and applications (interaction, usability, theory)
- 2005 ...: Commercial Applications (games, medical, industry)
- March 2007: MIT Technology Review, one of 10 most exciting technologies
- December 2007: Economist, AR like reality, only better
- 2013: Google Glass

JDelft

- 2014: Epson Moverio BT-200
- 2016: Microsoft Hololens

View through Microsoft Hololens

https://www.youtube.com/watch?v=RddvMLwT__g

History summary

- Augmented Reality has a long history going back to the 1960's
- Interest in AR has exploded over the last few years
- AR is being commercialized quickly
- AR is growing in a number of areas
 - Mobile AR
 - Web based AR
 - Marketing experiences
 - Gaming
 - Learning

TUDelft

SAMPLE AR APPLICATIONS

Typical AR Experiences

- Web based AR
 - Flash, HTML 5 based AR
 - Marketing, education
- Outdoor Mobile AR
 - GPS, compass tracking
 - Viewing Points of Interest in real world
- Handheld AR
 - Vision based tracking
 - Marketing, gaming
- Location Based Experiences
 - HMD, fixed screens
 - Museums, point of sale, advertising

AR books

https://www.youtube.com/watch?v=tRtLs6n_9Vw

*T***U**Delft

https://www.youtube.com/watch?v=X4UGOd9gHrg

Medical AR applications

Navab, N.; Blum, T.; Wang, L.; Okur, A. & Wendler, T., First Deployments of Augmented Reality in Operating Rooms, *Computer, IEEE Computer Society,* **2012**, *9*9, 48-55

Dezentje, P.; Cidota, M.A.; Clifford, R. M.; Lukosch, S. G.; Bank, P. J. & Lukosch, H. K., Designing for Engagement in Augmented Reality Games to Assess Upper Extremity Motor Dysfunctions, IEEE International Symposium on Mixed and Augmented Reality -Media, Art, Social Science, Humanities and Design, IEEE Computer Society, 2015, 57-58

Remote support

local user

We designed and built a system where a local user and a remote user can communicate via world-stabilized spatial annotations.

Gauglitz, S.; Nuernberger, B.; Turk, M. & Höllerer, T., Worldstabilized Annotations and Virtual Scene Navigation for Remote Collaboration, Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, ACM Press, 2014, 449-459

Datcu, D.; Cidota, M.; Lukosch, S.; Wolff, M. & Oliveira, D. M., Virtual Colocation to Support Remote Assistance for Inflight Maintenance in Ground Training for Space Missions, Proceedings of the 15th International Conference on Computer Systems and Technologies (CompSysTech'14), 2014

Lukosch, S.; Lukosch, H.; Datcu, D. & Cidota, M., Providing Information on the Spot: Using Augmented Reality for Situational Awareness in the Security Domain, Computer Supported Cooperative Work (CSCW) -- The Journal of Collaborative Computing and Work Practices, 2015, 24, 613-664

TUDelft

Holoportation

http://research.microsoft.com/en-us/projects/holoportation/

AUGMENTED REALITY FOR FUTURE EDUCATION AND LEARNING

Vision for teaching and education with augmented reality

- Use AR to support remote presence in labs
- Use AR to review designs in real environments
- Use AR to train skills and procedures
- Use AR to analyse large data sets
- Use AR to augment and extend standard teaching material

MICROSOFT HOLOLENS DEMO

