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How do you determine the sample size for a
new study?
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1) It is “known” that an effect exists in the population.

2) You have the following expectation for your study:

A pilot study revealed a difference between Group 1 (M =
5.68, SD =0.98) and Group 2 (M =6.28,SD =1.11)

p < .05 (Hurray!)

You collected 22 people in one group, and 23 people in the
other group. Now you set out to repeat this experiment.

What is the chance you will observe a significant effect?
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Unless you aim for accuracy...
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/ Always perform a power analysis

R EEE———————— .,
o

Main goal:
estimate the feasibility of a study

Prevent studies with low power

Power is 35% if you use 21 ppn/condition and
the effect size is d = 0.5.

With a 65% probability of
observing a False Negative,
that’s not what I'd call good
error control!



Power Analysis

Step 1: Determine the effect size you expect,
or the Smallest Effect Size Of Interest (SESOI)

A) Look at a meta-analysis
B) Calculate it from a reported study

C) Correct for bias (due to publication bias,
most published effect sizes are inflated)
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Calculate effect size from an article

From_R2D2: Effect size conversion spreadsheet
Indicate whether the effect size is calculated for a within or a between subjects design by choosing the correg

provided in the article and press Return (check the tooltips for details). Effect sizes below the boxes that turn g
me at D.Lakens@tue.nl or @Lakens. Version 1.1. Check http://osf.io/

Within or between effect? Fill in all the information provided in the article
t F dfef_fect dferror P

Click on the cell to change.

Never convert r from a within

design to d ord.ina
8 blp ¢ Effect sizes from ¢ -

between design. See Lakens | Sii=easrianidelia Effect sizes from t - Effect sizes from Effect sizes from
value and n1 and n2 . )
(2013) on calculating d ,, value and N for for independent ¢ valueand N for Cohen'sd ,,, andnl Cohen'sd,,, (and
and/ord,,, if you have SD's dependent t-test tist independent t-test and n2 if known)

and/or the correlation
between means.
Hedges's

F | d | dpy | A | dpy | d. | d, |hegers.| d, |
Ao | oo |t | oty | 0 | e | | rey | 1|
g | v | a | o | a | o | a | n

Download from https://osf.io/ixgcd/
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Sample Size Planning

Power analyses provide an estimated sample
size, based on the effect size, desired power,
and desired alpha level (typically .05).

You obviously can’t change the alpha of 0.05,
since it was one of the 10 commandments
brought down from Sinai by Mozes.
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Select test
Family

Select specific
test

Select power
analysis (a-priori,
sensitivity

Effect size
Alpha
Desired

Power

/ Human-Technology Interaction
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i, G*Power 3.1.9.2

File Edit View Tests Calculator Help

Central and noncentral distributions

Protocol of power analyses

Test family Statistical test

Type of power analysis

Means: Difference between two independent means (two groups)

A priori: Compute required sample size - given «, power, and effect size

Input Parameters
Tail(s) | Two

Qutput Parameters

N Joncentrality parameter & 3.2787193

critical t = 1.97402
-~
Vs N
Vi \
0.3 1 / \
/ \
7 \
0.2 1 / \
/ \
/ \
0.1 % N
‘B
7 ~
- s —
0 = T —— K T r =
-3 -2 -1 0 1 2 3 4 5 6

Determine => Effect siz

0.5 Critical t 1.9740167
0.05 Df 170
0.90 Sample size group 1 86

Sample size group 2 86
Total sample size 172
Actual power 0.9032300

X-Y plot for a range of values

Calculate
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Sample Size
needed, e.g,
for a medium
effect (d=0.5)
and 90% power
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/ Sample Size Planning
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e

- Got a more difficult design? Learn how to
simulate data in R, recreate the data you
expect, and run simulations, performing the
test you want to do.

- Ask for help — this is a job real statisticians do
all the time.
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f Sample Size Planning

- Some things to remember:

- There are different versions of Cohen’s d.
Subscripts are used to distinguish them.

Input Parameters Input Parameters

Effect size d 0.5 Effect size dz 0.5

o err prob 0.05 o err prob 0.0%
Power (1-§ err prob) 0.95 Power (1-§ err prob) 0.95

Allocation ratio N2 /N1 1
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- Some things to remember:

/ Sample Size Planning

e

- If you insert partial eta squared from repeated
measure ANOVA’s from SPSS directly into
G*Power, use the ‘AS IN SPSS’ option!

- (Many people make this error)

@  From variances
. o Variance explained by effect 1.0
ONLY insert partial eta
Wariance within group 2.0

squared from SPSS

N

1 Direct
Partial n2 0.5
Effect size f ?
/ Human-Technology Interaction [ Calculate and transfer to main window
u - % i

Close

]Pﬁ

If you have selected
‘As in SPSS’ in the
options window

Effect sige specification ...

i) as | CPower 3.0
CPower 3.0 with implicit rho
@ as in SP55

(") as in Cohen {1988) - recommended

Cancel ] [ 0K




Sample Size Planning

Don’t be surprised by what you find. Average

effect size in psychology isd =0.43 (=r=.21).
Independent sample t-test, two sided, power = .80
Need 86 ppn in each condition (N =172)

“Often when we statisticians present the results of a sample size calculation,
the clinicians with whom we work protest that they have been able to find
statistical significance with much smaller sample sizes. Although they do not
conceptualize their argument in terms of power, we believe their experience
comes from an intuitive feel for 50 percent power.”

Proschan, Lan, & Wittes, 2006
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If you perform 100 studies, how many times

can you expect to observe a Type 1 error and
how many times can you expect to observe a
Type 2 error?

This depends on how many times you will
examine an effect where H1 is true, and how
many times you will examine an effect where
HO is true, or the prior probability.
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What will your next study yield?

¥
' )

For your thesis you set out to perform a completely novel study examining a
hypothesis that has never been examined before. Let’s assume you think it is equally
likely that the null-hypothesis is true, as that it is false (both are 50% likely). You set
the significance level at 0.05. You design a study to have 80% power if there is a true
effect (assume you succeed perfectly). Based on your intuition (we will do the math
later — now just answer intuitively) what is the most likely outcome of this single
study? Choose one of the next four multiple choice answers.

A) It is most likely that you will observe a true positive (i.e., there is an effect, and the
observed difference is significant).

B) It is most likely that you will observe a true negative (i.e., there is no effect, and the
observed difference is not significant)

C) It is most likely that you will observe a false positive (i.e., there is no effect, but the
observed difference is significant).

D) It is most likely that you will observe a false negative (i.e., there is an effect, but the
observed difference is not significant)
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What will your next study yield?

HO True H1 True
(A-Priori 50% Likely) (A-Priori 50% Likely)

False Positives
Significant Finding (Type 1 error)
2.5%

True Positives
40%

False Negatives
(Type 2 error)
10%

True Negatives
47.5%

Non-Significant Finding
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Power

A generally accepted minimum level of power is
.80 (Cohen, 1988)

Why?
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Power

This minimum is based on the idea that with a
significance criterion of .05 the balance of a Type 2

error (1 — power) to a Type 1 error is .20/.05. (Cohen,
1988).

Concluding there is an effect when there is no effect in
the population is considered four times as serious as
concluding there is no effect when there is an effect in
the population.
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{ Power

Cohen (1988, p. 56) offered his recommendation in the
hope that ‘it will be ignored whenever an investigator
can find a basis in his substantive concerns in his
specific research investigation to choose a value ad
hoc.”
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Power

But whatever conclusion is reached
the following position must be recognised. If we reject Hy, we may reject it when it
is true ; if we accept Hy, we may be accepting it when it is false, that is to say, when
really some alternative H, is true. These two sources of error can rarely be eliminated
completely ; in some cases it will be more important to avoid the first, in others the
second. We are reminded of the old problem considered by LAPLACE of the number of
votes in a court of judges that should be needed to convict a prisoner. Is it more serious
to convict an innocent man or to acquit a guilty ? That will depend upon the con-
sequences of the error; is the punishment death or fine; what is the danger to the
community of released criminals; what are the current ethical views on punishment ?
From the point of view of mathematical theory all that we can do is to show how the
risk of the errors may be controlled and minimised. The use of these statistical tools

in any given case, in determining just how the balance should be struck, must be left
to the investigator.

[Neyman & Pearson, 1933]
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Power
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At our department, the ethical committee requires a
justification of the sample size you collect. Journals are
starting to ask for this justification as well. Make sure
you can justify your sample size.

If our researchers request money from the department,
they should aim for 90% power. Exceptions are always
possible, but the general rule is clear. We will not waste
money on research that is unlikely to be informative.
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Are most published findings

false?

B B
Researchers degrees of freedom
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Open access, freely available online

Why Most Published Research Findings

Are False

John P. A. loannidis

Summary

There is increasing concern that most
current published research findings are
false. The probability that a research claim
is true may depend on study power and
bias, the number of other studies on the
same question, and, importantly, the ratio
of true to no relationships among the
relationships probed in each scientific
field. In this framework, a research finding
is less likely to be true when the studies
conducted in a field are smaller; when
effect sizes are smaller; when there is a
greater number and lesser preselection
of tested relationships; where there is
greater flexibility in designs, definitions,
outcomes, and analytical modes; when
there is greater financial and other
interest and prejudice; and when more
teams are involved in a scientific field
in chase of statistical significance.
Simulations show that for most study
designs and settings, it is more likely for
a research claim to be false than true.
Moreover, for many current scientific
fields, claimed research findings may

factors that influence this problem and
some corollaries thereof,

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
vet ilHounded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a pvalue less than 0.05. Research
is not most appropriately represented
and summarized by frvalues, but,
unfortunately, there is a widespread
notion that medical research articles

It can be proven that
most claimed research
findings are false.

should be interpreted based only on
prvalues. Research findings are defined

bimsivm ae aatr dalatimaiehies acamas B o

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

true relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where either there
is only one true relationship (among
many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre=study probability of a relationship
being true is B/ (R + 1). The probability
of a study finding a true relationship
reflects the power 1 — § (one minus
the Type II error rate). The probability
of claiming a relationship when none
truly exists reflects the Type | error
rate, ¢t Assuming that ¢ relationships
are being probed in the field, the
expected values of the 2 = 2 table are
given in Table 1. After a research
finding has been claimed based on
achieving formal statistical significance,
the poststudy probability that it is true
15 thie positive predicuve value, PPV,



f What do you think?

- How much published research is false?

- How much published research should be true?
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What's the problem?

I Hypothetico-deductive

Bl (2010 scientific method

Publication bias

Lack of data sharing ~ . Lack of
enerate i i

/ T T—— s replication

~70% failure hextoxperiment hypotheses 1in 1000 papers
Wicherts et al (2006) Makel et al (2012)

~50-90% prevalence
Interpret John et al (2012)

data Kerr (1998) Design study

Low statistical power

p-hacking "‘50% chance to detect
medium effects
~50-100% prevalence Cohen (1962); Sedimeier and
John et al (2012) Gigerenzer (1989); Bezeau
and Graves (2001)
p-hacking
Analyse data & €~ Collect data

test hypotheses i I
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/ What is p-hacking?

- Aiming for p < a by:

- Optional stopping

- Dropping conditions

- Trying out different covariates

- Trying out different outlier criteria

- Combining DV’s into sums, difference scores, etc.

- IMPORTANT: Only bad if you only report analyses that
give p < a, without telling people about the 20 other
analyses you did.
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The consequences

Table |. Likelihood of Obtaining a False-Positive Result

significance level

Researcher degrees of freedom p=.l p=<.03 p=<.0l

Situation A: two dependent variables (r = .50) I7.8% 9.5% 1.2%

Siation B: addition of 10 more observations 14.5% 1.7T% |.6%
per cell

Siwation C: controlling for gender or interaction 21.6% [1.7% 17%
of gender with treatment

Situation D dropping (or not dropping) one of 23.2% | 1.6% 1.8%
three conditions

Combine Situations A and B 26.0% I 4.4% 1.3%

Combine Situations A, B, and C 30.9% 30.9% B.4%

Combine Situations A, B, C,and D 81.5% 60.7% 21.5%

Mote: The mble reports the percentage of | 5,000 simulaced samples in which at lease one of 2

set of analyses was significanc Observations were drawn independendy from 2 normal distribu-

tion. Baseling is 2 two-condition design with 20 cbservations per cell. Resules for Situation A were

obtzined by conducting three t tests, one on each of two dependent variables and a third on the

average of these two variables. Results for Sinuaton B were cbtained by conducting one t test after

collecting 20 observations per cell and another zfter collectdng an addidonal 10 observadons per

cell. Results for Sinueton C were obtzined by conducting a t test, an analysis of covariance with a

gender main effect, and an analysis of covariance with a gender interaction {each observation was

assigned a 50% probabilicy of being female). We report a significant effect if the effect of condition

was significant in any of these analyses or if the Gender » Condition interaction was significant.

Results for Situation D were obmined by conductng t tests for each of the three possible pairings

of condidons and an ordinary least squares regression for the linear trend of 2l three conditions , Technische Universiteit
/ Human-Technology Interactio [coding: low = —I|, medium = 0. high = 1}. Eindhoven

. University of Technology



False Positives
e

Is there a ‘a peculiar prevalence of p-values just below
0.05’ (Masicampo & Lalande, 2012), are "just
significant” results on the rise’ (Leggett, Loetscher, &
Nichols, 2013), and is there a ‘surge of p-values
between 0.041-0.049’ (De Winter & Dodou, 2015)?

No (Lakens, 2014, 2015) — these claims over huge sets
of studies are false. Remember to also be skeptical
about the skeptics.
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False Positives

Results from blind rater of Psychological Science
100 ,

AN o
70 g © i

50 \\c?“\\ :
40 \q\

30 (o) ; h\

20 O 5

o =. o ——~o-_0 , ©

Number observed
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Frequency

False Positives

100000 studies with 50% power 100000 studies with 50% power and
only true effects 200000 studies with p-hacking
20000
15000 —

15000 —
)
-

10000 % 10000 —
L]
T

0- [T )

[ T T I T | I T I I l ]
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

Observed p-value Observed p-value

Lakens, D. (2014). What p-hacking really looks like: A comment on Masicampo &
LaLlande (2012). Quarterly Journal of Experimental Psychology, 68, 829-832. doi:
10.1080/17470218.2014.982664.
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False Positives

False positives should not be our biggest concern of
the Big 3 (Publication Bias, Low Power, and False
Positives) that threaten the False Positive Report
Probability (Wacholder, Chanock, Garcia-Closas, El
ghormli, & Rothman (2004) or Positive Predictive Value
(loannidis, 2005).

However, it is by far the easiest one to fix, and to
identify.
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f P-curve analysis

- Determine whether studies have evidential
value

- Know what to trust, build on, and cite, and
what to ignore (not build on or cite) untill
beter evidence is available.
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WWW.p-curve.com

Paper 1 Paper 2 Paper 3
P per 2 'Better P-curves' The online app 4.0 The User Guide Supp Materials

Evidential Value Effect size
(robustness)

3 Official User-Guide to the P-curve
P-Curve: A Key 1o the File-Drawer ]
‘ dps Better P-Curves H
T =l 5
pGurve and Effect Size: Gorrecting for : url Smonsonn g
Publication Bias Using Only Significant - yriversty f Penrgyhania - The Wharton Schocl g=
Results 5 & i
Joseph P. Simmons
T — sy ofPer The Wharton chod
e o AP eTp— i o . [
P S ——
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f Distribution of p-values

- Take 100 studies that find a significant effect
and plot the frequency of p-values.

- What should that distribution look like?
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Distribution of p-values

Frequency No effect
Uniform

.01 .02 .03 .04 .05

ty of Technology
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Distribution of p-values

Frequency True effect
Right-skew

.01 .02 .03 .04 .05

ty of Technology
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Distribution of p-values

Frequency p-hacked
left-skew

.01 .02 .03 .04 .05

ty of Technology
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Distribution of p-values

Frequency

.01 .02 .03 .04 .05
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An example

Professors are Not Elderly: Evaluating the Evidential Value of Two Social Priming Effects Through
P-Curve Analyses

Daniel Lakens
Eindhowven University of Technology (TUE)

January 20, 2014

Abstract:

It is possible that the number of false positives in the literature is much greater than Is desirable due to a combination of low statistical power, publication bias, and flexibility
when analyzing data. Recently, some researchers have argued the replicability crisis social priming research is greatly exaggerated (Dijksterhuis, 2014, Stroebe & Strack,
2014). To quantify the extent to which researcher degrees of freedom are a real problem, I present two p-curve analyses that examine the evidential value of research lines
on professor priming and elderly priming. The results indicate studies examining elderly priming are p-hacked, while studies examining professor priming contain evidential
value. I believe a polarized discussion about whether social priming is true or not, whether direct replications or conceptual replications are preferable, or whether

methedological rigor or theory development is needed is unlikely to lead to scientific progress. Instead, we have to meta-analytically evaluate individual effects based on their
evidential value, and collaboratively examine what is likely to be true.

Number of Pages in PDF File: 13
Keywords: P-curve, Social Priming, Statistical Power, Meta-Analysis

working papers series
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Figure 1. P-curve analysis of elderly priming studies
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Figure 2. P-curve analysis of professor priming studies
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What went wrong?

z ;
o

One problem is that people tended to
collect data, look at the data, collect
more data, and stop when p < 0.05.

Called optional stopping

With optional stopping the chance of p
< 0.05 when HO is true is 100% (if you
are patient).



Ethical Issues in Data Collection

;
1

Continuing data collection whenever the
desired level of confidence is reached, or
whenever it is sufficiently clear the expected
effects are not present, is a waste of the time of

participants and the money provided by tax-
payers.

So do optional stopping right.
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if Sequential analyses

Because of the substantial savings in the expected number of observations
effected by the sequential probability ratio test, and because of the simplicity
of this test procedure in practical applications, the National Defense Research
Committee considered these developments sufficiently useful for the war effort
to make it desirable to keep the results out of the reach of the enemy, at least for
a certain period of time. The author was, therefore, requested to submit his
findings in a restricted report [7] which was dated September, 1943.®> In this
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The main idea

= With a symmetrical two-sided test, and an a = .05, this test
should yield a Z-value larger than 1.96 (or smaller than -1.96)
for the observed effect to be considered significant (which has
a probability smaller than .025 for each tail, assuming the null-
hypothesis is true).

Data Statistical
Collection testZ>1.96
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The main idea

= When using sequential analyses with a single planned interim
analysis, and a final analysis when all data is collected, one test
is performed after n (e.g., 80) of the planned N (e.g., 160)
observations have been collected, and another test is
performed after all N observations are collected.

Data Statistical Data Statistical

Collection W testZ>cl N Collection || testZ > c2

) Technische Universiteit
/ Human-Technology Interaction 1-2-2016 PAGE 47 e Eindhoven
University of Technology



We need to select boundary critical Z-values c1 and c2 (for
the first and the second analysis) such that (for the upper
boundary) the probability (Pr) that the null-hypothesis is
rejected either when in the first analysis Zn > c1, or (when

Zn < cl in the first analysis) ZN > c2 in the second analysis.
In formal terms:

Pr{Zn 2 c1} + Pr{Zn < cl1, ZN > c2} = 0.025

- See Proschan, Gordon-Lan, & Turk Wittes (2006)
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f (don’t worry too much about the math)

0.025=Pr{Z,2¢}+Pr{Z, <e;, Zy 25}

n n n n
=¢{—C1)+Pr{J;-ZH < \{;'Ch Zy —\/;-Z,, 2 ¢ -\/;'Zn}
112 1
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So how do we determine the critical values?
(and their accompanying nominal a levels)
There are different approaches, each with its

own rationale.

0.025

-0.0251(t>0) :

Cumulative Alpha
0.015 0.020
1 I

0.010
|

0.005
1

0.0251(t=1)

0.0
L

/ Human-Technology Interaction 0.0 0.2 0.4 0.6 0.8 1.0




For example, the Pocock boundary will lower
the alpha level for each interim analysis. With
2 looks, the o = 0.0294 for each analysis.

Let’s imagine after the first analysis, you find:
t(79) = 2.30, p = .024.

Because p <.0294, you terminate the data
collection (and take the rest of the day off!).
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{ The Benefit of Early Stopping

- Remember power is a concave function:

100% ==5=0.8
90% / —5=0.7
80% - w==0=0.6
70% ’ e==0=0.5
w=0=0.4

//
60% -
Power 50% - ,, w0=0.3
//
/v
/4
20%

10%
0%

10 20 30 40 50 60 70 80 90 10% Technische Uni
/ Human-Technology Interaction Sample Sire per Condltlon PPPPPP U/e Emggm of Technology




Getting Started
Lo

For a practical introduction with step-by-step
instructions, see Lakens (2014), European
Journal of Social Psychology.

Using sequential analyses when you plan
designs based on their power will make you
20/30% move efficient (when H1 is true, and
save you even more when HO is true).
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Pro-Self Pro-Social
(no sharing, (data sharing,
file-drawer, replication,
p-hacking) pre-registration)
Pro-Self
(no sharing, +- -
file-drawer,
p-hacking) T- T
Pro-Social
(data sharing, + ++
replication,
- ++

pre-registration)

/ Human-Technology Interaction

Th hU
TU/e 5
tyfTh ology




Sci Eng Ethics (2007) 13:437-461
DOI 10.1007/s11948-007-9042-5

ORIGINAL PAPER

The Perverse Effects of Competition on Scientists’
Work and Relationships

Melissa S. Anderson - Emily A. Ronning -
Raymond De Vries * Brian C. Martinson

Abstract Competition among scientists for funding, positions and prestige, among
other things, 1s often seen as a salutary driving force in U.S. science. Its effects on
scientists, their work and their relationships are seldom considered. Focus-group
discussions with 51 mid- and early-career scientists, on which this study is based,
reveal a dark side of competition in science. According to these scientists, com-
petition contributes to strategic game-playing in science, a decline in free and open
sharing of information and methods, sabotage of others’ ability to use one’s work,
interference with peer-review processes, deformation of relationships, and careless
or questionable research conduct. When competition is pervasive, such effects may
jeopardize the progress, efficiency and integrity of science.



~92% positive
Fanelli (2010)

\

Hypothetico-deductive
scientific method

Publication bias
Lack of data sharing

/

~70% failure
Wicherts et al (2006)

Interpret
data

Publish or condu
next experiment

S\a

QAe®

~ Generate

ct

and specify
hypotheses

~50-90% prevalence
John et al (2012)
Kerr (1998)

p-hacking

~50-100% prevalence
John et al (2012)

Analyse data & <€

test hypotheses I I

p-hacking
> Collect data

Lack of

replication

1in 1000 papers
Makel et al (2012)

Design study

Low statistical power

~50% chance to detect

medium effects
Cohen (1962); SedImeier and

Gigerenzer (1989); Bezeau
and Graves (2001)
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Estimating the reproducibility of
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RESEARCH ARTICLE SUMMARY

PSYCHOLOGY B

Estimating the reproducibility of
psychological science

Open Science Collaboration™

Effect size comparison Original and replication combined

Percent
Replications \ean Meta- Percent original Percent
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RESEARCH ARTICIE SITMMARY
Reproducibility Project (~60% failure rate)
(Open Science Collaboration, 2015)

Social Psych special issue (~70% failure

rate)
(Nosek & Lakens, 2014)

Cancer cell biology (~90% failure rate)
(Begley & Ellis, 2012)

Cardiovascular health (~75% failure rate)
(Prinz, Schlange, & Asadullah, 2011)
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/ Don't focus on single p-values

e

Don't care too much about every individual
study having a p-value < .05.

As long as you perform close replications,
report all the data, and perform a small
scale meta-analysis.
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‘* Zhang, Lakens, & Isselsteijn, 2015

In press, Acta Psychologica

3 almost identical studies, study 3 pre-
registered, 1/3 with p<.05

overall Cohen’s d = 0.37, 95% CI [0.12, 0.62],
t =289 p=.004

Study 95%-C|
Experiment 1 —= 0.70 [0.08; 1.32]
Experiment 2 - 0.42 [-0.08; 0.92]
Experiment 3 — 0.26 [-0.07; 0.59]
Overall ES e 0.37 [ 0.12; 0.62]
[ I [ I [ I
1 0.5 0 0.5 1 15 2 I technische universiteit
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35% increase in data sharing over the
last 1.5 years by just asking for it

OPEN DATA OPEN MATERIALS PREREGISTERED
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Dutch Science funder NWO will
make data sharing a requirement
for all tax funded research

OPEN DATA OPEN MATERIALS PREREGISTERED




Open Science Framework

OSF | Home
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Apple Disney ESPN Yahoo! Virginia Sports Google Scholar Today baseball

Open Science Frameworke=n  Explore ~

Create an Account or Sign-In

The Open Science Framework (OSF) supports
the entire research lifecycle: planning,
execution, reporting, archiving, and
discovery.
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The Spatial Grouping of Response Keys
Influences Conceptual Congruency
Effects

Contributors. Daniel Lakens, Iriz Schneider, Sascha Topelinzki, Thorsten Erle
Date Created; 2013-07-25 03.42 PM | Last Updated: 2014-04-09 0922 PM
Description: Mo description

Overview Files Wiki Statistics Registrations Forks sharing settings

Preregistration Study 5.pdf

Page: 1/2

Pre-registration of Lakens, Erle, Schneider, & Topolinksi, Study 5, for the paper wath the
Effects.”

Thas 15 a pre-remstration of a planned sequential analysis to examine the difference in the
congrency effect between two modified versions of the IAT, where participants use four

15 currently in progress, but that no data has been analyzed.

Procedure
Participants will perform a modified version of the IAT, and will be randomby

working title:” The Spatial Grouping of Response Keys Influences Conceptual Congruency

response keys, either close together or far apart. Note that the data collection has started and

aszipned to the condition with two spatially differentiated groupsz of adjacent response keys
(AS KEL) or the condition where four spatially adjacent response kevs did not easily afford a
left vs. right subprouping of the rezsponze keys (FGHJI). The A'F and the L/ kevs are always

mxirad vnth faroste froa the ymlonnrs Aoty wwhila tha €0 amd T Forre ars s arod oot

Make Private Public

The Spatial Grouping of Response Keys
Conceptual Congruency Effects

Preregistration Studv S.pdf
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Registered Reports

A Method to Increase the Credibility of Published
Results

Brian A. Nosek! and Daniél Lakens?
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Reaister

Registration

Reqgistration cannot be undone, and the archived content and files cannot be deleted
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LUDWIG-
MAXIMILIANS-
UNIVERSITAT

MOMCHEN

An der Fakultat fiir Psychologie und Pidagogik der Ludwig-Maximilians-Universitat Minchen ist
zum Wintersemester 2016/2017 eine

Professur (W3) fiir Sozialpsychologie
(Lehrstuhl)

Zu besetzen.

Zu den Aufgaben in der Lehre gehbrt die Vertretung des Faches Sozialpsychologie in seiner
ganzen Breite im Bachelor-Studiengang ,Psychologie”, in verschiedenen Nebenfachstudiengingen
der Psychologie und im Masterstudiengang .M.Se. in Psychologie: Wirtschafts-, Organisations- und
Sozialpsychologie”.

Forschungsschwerpunkte mit Anschlussfahigkeit an die Forschungsaktivitdten im Rahmen des
Munich Center of the Learmning Sciences” (MCLS, www.mcls.Imu.de 7), des ,Munich Experimental
Laboratory for Economic and Social Sciences” (MELESSA, www.melessa.lmu.de ) oder der
<Graduate School of Systemic Neurosciences” (GSN, www.gsn.Imu.de ) sind erwiinscht.

Die Ludwig-Maximilians-Universitat Minchen (LMU) méchte eine hervorragend ausgewiesene
Persdnlichkeit gewinnen, die ihre wissenschaftliche Qualifikation im Anschluss an ein
abgeschlossenes Hochschulstudium und eine Uberdurchschnittliche Promotion im Bereich
Psychologie durch international sichtbare, exzellente Leistungen in Forschung (z. B. Publikationen
in international anerkannten Fachzeitschriften, erfolgreiche Einwerbung von Drittmitteln) und Lehre
(u. a. durch Lehrevaluation) nachgewiesen hat. Die Mitwirkung an den Forschungsaktivitaten im
Rahmen von MCLS, MELESSA oder GSN ist erwiinscht.

Das Department Psychologie legt Wert auf transparente und replizierbare Forschung und
unterstitzt diese Ziele durch Open Data, Open Material und Praregistrierungen. Bewerber/innen

werden daher gebeten, in ihrem Anschreiben darzulegen, auf welche Art und Weise sie diese Ziele .:EEE\TL’,? Universiteit

bereits verfolgt haben und in Zukunft verfolgen machten. niversity of Technology




Thanks for Your Attention!

=

Blog on methods & statistics
http://daniellakens.blogspot.nl/

Questions when you start using these techniques?
Contact me on Twitter:

@Lakens
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